Ultrafast and whole-body cooling with total liquid ventilation induces favorable neurological and cardiac outcomes after cardiac arrest in rabbits.
نویسندگان
چکیده
BACKGROUND In animal models of cardiac arrest, the benefit afforded by hypothermia is closely linked to the rapidity of the decrease in body temperature after resuscitation. Because total liquid ventilation (TLV) with temperature-controlled perfluorocarbons induces a very rapid and generalized cooling, we aimed to determine whether this could limit the post-cardiac arrest syndrome in a rabbit model. We especially focused on neurological, cardiac, pulmonary, liver and kidney dysfunctions. METHODS AND RESULTS Anesthetized rabbits were submitted to either 5 or 10 minutes of untreated ventricular fibrillation. After cardiopulmonary resuscitation and resumption of a spontaneous circulation, the animals underwent either normothermic life support (control) or therapeutic hypothermia induced by TLV. The latter procedure decreased esophageal and tympanic temperatures to 32°C to 33°C within only 10 minutes. After rewarming, the animals submitted to TLV exhibited an attenuated neurological dysfunction and decreased mortality 7 days later compared with control. The neuroprotective effect of TLV was confirmed by a significant reduction in brain histological damages. We also observed limitation of myocardial necrosis, along with a decrease in troponin I release and a reduced myocardial caspase 3 activity, with TLV. The beneficial effects of TLV were directly related to the rapidity of hypothermia induction because neither conventional cooling (cold saline infusion plus external cooling) nor normothermic TLV elicited a similar protection. CONCLUSIONS Ultrafast cooling instituted by TLV exerts potent neurological and cardiac protection in an experimental model of cardiac arrest in rabbits. This could be a relevant approach to provide a global and protective hypothermia against the post-cardiac arrest syndrome.
منابع مشابه
Resuscitation Science Ultrafast and Whole-Body Cooling With Total Liquid Ventilation Induces Favorable Neurological and Cardiac Outcomes After Cardiac Arrest in Rabbits
Background—In animal models of cardiac arrest, the benefit afforded by hypothermia is closely linked to the rapidity of the decrease in body temperature after resuscitation. Because total liquid ventilation (TLV) with temperature-controlled perfluorocarbons induces a very rapid and generalized cooling, we aimed to determine whether this could limit the post–cardiac arrest syndrome in a rabbit m...
متن کاملHypothermic liquid ventilation prevents early hemodynamic dysfunction and cardiovascular mortality after coronary artery occlusion complicated by cardiac arrest in rabbits.
OBJECTIVES Ultrafast and whole-body cooling can be induced by total liquid ventilation with temperature-controlled perfluorocarbons. Our goal was to determine whether this can afford maximal cardio- and neuroprotections through cooling rapidity when coronary occlusion is complicated by cardiac arrest. DESIGN Prospective, randomized animal study. SETTING Academic research laboratory. SUBJE...
متن کاملKidney protection by hypothermic total liquid ventilation after cardiac arrest in rabbits.
BACKGROUND Total liquid ventilation (TLV) with perfluorocarbons has been shown to induce rapid protective cooling in animal models of myocardial ischemia and cardiac arrest, with improved neurological and cardiovascular outcomes after resuscitation. In this study, the authors hypothesized that hypothermic TLV can also limit kidney injury after cardiac arrest. METHODS Anesthetized rabbits were...
متن کاملDevices for rapid induction of hypothermia.
In industrial countries it is estimated that the incidence of out-of-hospital sudden cardiac arrest lies between 36 and 128 per 100,000 inhabitants per year. Almost 80% of patients who initially survive a cardiac arrest present with coma lasting more than 1 h. Current therapy during cardiac arrest concentrates on the external support of circulation and respiration with additional drug and elect...
متن کاملLetter by Guo et al Regarding Article, "Endovascular Versus External Targeted Temperature Management for Patients With Out-of-Hospital Cardiac Arrest: A Randomized, Controlled Study".
To the Editor: We read with great interest the recent article by Deye et al concerning “Endovascular Versus External Targeted Temperature Management for Patients With Out-of-Hospital Cardiac Arrest.” Their excellent study on this important subject deserves applause. However, we have some concerns about the strength of their conclusion that endovascular cooling was not significantly superior to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 124 8 شماره
صفحات -
تاریخ انتشار 2011